Журнал «Радио» для начинающих

Завершая разговор о старых журналах, я хотел бы упомянуть о том приятном впечатлении, которое на меня произвела забота журнала о начинающих радиолюбителях. Целый ряд статей посвящен рассказу об электротехнике, радиотехнике, радиоприемных устройствах и т. д.

На базе нескольких статей из этих журналов я продолжу рассказ о программах для работы с электроникой.

Начну, однако, с того, что приведу выдержку из статьи из №12 за 1962 год. Статья называется «Радиолюбитель должен быть экспериментатором» и подписана З.Лайшев.

«Даже беглое знакомство с редакционной почтой и содержащимися в письмах вопросами свидетельствуют о том, что основная масса читателей, обращающихся за консультацией, ­ молодые, начинающие радиолюбители...

К сожалению, далеко не все авторы писем в редакцию представляют себе тот объем знаний, который в настоящее время необходим квалифицированному радиолюбителю. Некоторые, например, считают, что достаточно правильно повторить конструкцию по готовой схеме из журнала или книги, и можно уже считать себя радиолюбителем. Обычно такие товарищи, собрав одну-две конструкции, но не сумев их наладить, очень быстро убеждаются в том, что радиотехника требует более глубоких знаний, чем они предполагали...

... И самое главное ­ больше и смелее экспериментировать, ибо настоящий радиолюбитель обязательно должен быть экспериментатором».

Я совершенно согласен с автором статьи. Знания, которые всегда можно почерпнуть из книг, из объяснений более опытных друзей или знакомых (а сегодня, порою, и не знакомых, где нибудь на форуме посвященном электронике), желание и практика, эксперименты и выводы из своих побед, равно, как и неудач ­ путь в радиотехнику и электронику. И если сорок лет назад этот путь трудно было пройти без приборов и не всегда доступных деталей, то сегодня, имея компьютер, можно (хотя и не следует замыкаться только в этом виртуальном мире) проделать этот путь гораздо быстрее и комфортнее.

Общая рубрика для начинающих называется «Путь в радиотехнику и электронику». Возможно, эта рубрика начинается раньше, но у меня есть только журнал №4 за 1962 год, где я этот раздел и обнаружил. Статья называется «Постоянный электрический ток», автор инженер С.Матвеев. Я не буду пересказывать статью, кому интересно прочитает, но возьму ее за основу в рассказе о постоянном токе. Оригинальная статья очень подробна, а, главное, точна в рассказе, тогда как мое изложение я нахожу беспорядочным и весьма небрежным, но переписывать статью я все-таки не намерен. Для начала я на некоторое время прерву свой рассказ, чтобы посмотреть в Интернете (из которого я вынул гвоздь, забитый при ремонте квартиры, и который в благодарность за это «ожил») не произошло ли заметных сдвигов в понимании того, что такое электрон. Поскольку мой рассказ я хочу начать словами: никто по сегодняшний день не знает, что такое электрон, но это не мешает нам более ста лет, а по свидетельству археологов и много более, не мешает пользоваться электрическим током.

Прочитав с десяток статей, и изрядно этим чтением увлекшись, я могу объединить их под одним заголовком, которому обязан статье Г.П.Петина:

«Сто лет назад классик сказал: "Электрон так же неисчерпаем, как и атом". За истекшее с тех пор время наука сумела неплохо объяснить взаимодействие электрона с внешним (для электрона) миром, но что представляет из себя сам электрон, его внутреннее устройство, до сих пор совершенно неясно».

Начну-ка я рассказ об очень полезных для радиолюбителя, многим, если не всем, знакомых законах Ома и Кирхгофа. И следующей программой будет одна из первых, с которой я познакомился в Linux, но так и не смог «оживить» для своих нужд, а именно, gEDA. Подобно многим современным системам gEDA при запуске открывает менеджер проекта. Сегодня программа русифицирована (во всяком случае, менеджер проекта). Для разнообразия я создаю проект hom.

Запустив из менеджера проекта редактор схемы, Инструмент, я в разделе основного меню Добавить выбираю Компонент (или нажав иконку с изображением логического вентиля на основной инструментальной панели), чем открываю окно диалога. В нем я хочу найти резистор, батарейку и что-то, что позволит мне измерить ток и напряжение.

Увы, почти нарисовав схему, я попытался обозначить вольтметр, но в итоге редактор закрылся, оставив меня «с носом». Придется и с этой программой разбираться позже. На очереди программа Ktechlab.

Совершив манипуляции обычным образом, я получаю в результате симуляции следующую картину:




Рис.1.33. Закон Ома в программе Ktechlab

Вольтметр показывает напряжение в 10 В, а амперметр ток 1 мА (с полярностью амперметра получилось неправильно, но это сейчас не суть важно). Закон Ома гласит, что ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению. То есть, если мы разделим 10 В на 10 кОм, то получим 1 мА. Это же говорит и программа. Добавим еще один резистор, последовательно с уже существующим, и еще один вольтметр, параллельно новому резистору. Запустим симуляцию и получим:




Рис.1.34. Первый закон Кирхгофа в программе Ktechlab

Как и следовало ожидать из закона Ома, при увеличении сопротивления вдвое ток должен уменьшиться вдвое. А первый закон Кирхгофа гласит, что сумма падений напряжения в цепи должно равняться эдс (напряжению батарейки в данном случае). Сложим показания двух вольтметров и получим 10 В.

Второй закон Кирхгофа гласит, что сумма токов в ветвях цепи должна быть равна току, притекающему к узлу (ветвления). После переделок схемы, это положение выглядит так:




Рис. 1.35. Второй закон Кирхгофа

Как и следовало ожидать, амперметры в каждой из ветвей показывают по 1 мА, а амперметр справа показывает их сумму 2 мА. Этих простых, в общем-то, законов вполне достаточно для понимания всего происходящего в электрических схемах. Например, что у нас получится, если два резистора соединены последовательно? При неизменном напряжении источника тока ток в цепи уменьшится вдвое, если посмотреть на рис.1.34, то именно это и происходит. Но то же самое произойдет, если мы в схеме на рис. 1.33. вдвое увеличим значение резистора. Попробуйте. Программа Ktechlab позволяет в наш проект hom добавить все файлы схем с помощью подменю Add Existing File раздела основного меню Project. Слева на вкладке Project отображаются все файлы, добавляемые в проект. Теперь можно быстро переключаться между схемами и легко изменять значения элементов схемы. Легко можно посмотреть, что происходит при параллельном включении двух резисторов. Они будут эквивалентны одному, вдвое меньшего номинала.

Обо всем этом, о действии электрического тока и рассказано в статье, о которой я упоминал в самом начале.

Следующий журнал №8 за 1962 год со статьей инженера Е.Овчаренко «Переменный ток» из той же рубрики «Путь в радиотехнику и электронику». Из статьи я приведу только одну выдержку:

«Строго говоря, изменяющийся с течением времени по величине и по направлению, является переменным. Однако под термином переменный ток принято понимать такой ток, величина и направление которого изменяются периодически».

Мне нравится, что автор точно и сжато очерчивает и рамки применения термина и раскрывает сам термин. Действительно, очень важно понимать, что переменный ток это не только изменяющийся по направлению ток, но и меняющийся по величине. Иначе, говоря о сигналах в схеме, трудно понять, как конденсатор, не пропускающий постоянный ток, пропускает сигнал, хотя в схеме нет источника переменного тока ­ схема питается от батарейки, которая может давать только постоянный ток. И здесь мне хотелось бы упомянуть, поскольку я заговорил о конденсаторе, переходные процессы. Конденсатор в самом простом виде ­ это две пластины разделенные диэлектриком, материалом, который по определению не пропускает постоянный ток (во всяком случае явно или достаточно большой ток, чтобы о нем говорить). Но если собрать цепь из батарейки, конденсатора, амперметра и выключателя, а затем замкнуть выключатель, то амперметр покажет бросок тока. Схема такого эксперимента выглядит следующим образом:




Рис.1.36. Схем эксперимента в программе Ktechlab

Если нажимать клавишу расположенную под выключателем и наблюдать ток в цепи, то это и будет сущностью эксперимента. Но я не уверен, что получу симуляцию этого процесса. Поэтому несколько модифицирую схему эксперимента. Что мне нужно? Мне нужно чтобы в начальный момент напряжение, подаваемое на конденсатор было нулевым, а затем разом становилось равно некоторой величине, положим 5 В или 10 В. И мне хотелось бы видеть ток, протекающий через конденсатор. Для последнего я могу включить резистор последовательно с конденсатором и наблюдать характер напряжения на нем. А для подачи напряжения я могу воспользоваться генератором импульсов. В этом случае схема эксперимента примет следующий вид:




Рис.1.37. Модификация схемы эксперимента

Как видно на осциллограмме, ток через конденсатор резко возрастает, а затем постепенно спадает, становясь равным нулю до следующего импульса напряжения от источника импульсов. Таким образом, сопротивление конденсатора постоянному току очень велико (в идеальном случае бесконечно велико), но оно конечно для ИЗМЕНЕНИЙ напряжения, и определяется скоростью изменений. Для переменного тока, в смысле определения данного в статье, сопротивление конденсатора переменному току будет зависеть от частоты тока. Это сопротивление называют емкостным (или реактивным в общем случае), его величина обратно пропорциональна частоте переменного тока, умноженной на емкость конденсатора. Если частоту мы выражаем в привычных нам герцах, то частота умножается на коэффициент равный удвоенному значению числа «пи» (или 3.14). Вы можете продолжить эксперименты, изменив схему, как это показано ниже:




Рис.1.38. Конденсатор в цепи переменного тока

На рисунке выше в нижнем окне верхняя осциллограмма относится к напряжению на резисторе, а нижняя к источнику переменного тока. Как видно из рисунка, конденсатор и резистор для переменного тока образуют делитель напряжения, то есть с резистора снимается часть сигнала генератора. Но то, что хотел показать я ­ это то, как легко проводить эксперименты в компьютерных программах, чтобы понять, что же происходит в реальных схемах! Или я не прав?

Завершая тему старых журналов и рубрики «Путь в радиотехнику и электронику», я хотел бы упомянуть о еще одном свойстве резисторов, конденсаторов и индуктивностей. Для переменного тока они все представляют некоторое сопротивление. При этом резисторы обладают свойством активного сопротивления, а конденсаторы и индуктивности реактивного. Более строго активное и реактивное сопротивление различают по потреблению мощности, если активное сопротивление потребляет мощность, то реактивное (идеальное) нет. Косвенно это проявляется в виде сдвига фаз между током и напряжением в цепи, состоящей из этих элементов. Если цепь состоит из активных сопротивлений, то ток и напряжение совпадают по фазе. Если в цепи есть активное и реактивное сопротивление, то ток и напряжение при близкой величине сопротивлений элементов цепи не совпадают по фазе. Вот как выглядит цепь из конденсатора и резистора в программе Ktechlab:




Рис.1.39. К вопросу о сдвиге фаз

Напряжение на резисторе отображает состояние тока через резистор, поскольку по закону Ома оно равно произведению тока на сопротивление, а для переменного тока это справедливо для каждого момента времени.

Сравнивая осциллограммы в месте, выделенном эллипсом, можно заметить, что напряжение на резисторе (нижний сигнал) и на генераторе не совпадают по фазе. Если заменить конденсатор резистором, то получится следующее:




Рис.1.40. Отсутствие сдвига фаз в цепи с активными элементами






Hosted by uCoz